

Before Class

- A good textbook & teacher are an advantage but you are the one who does the learning.
- This course is the foundation on which most other courses in EE.
- Solve as many problems as you can.
- LTSpice, circuit simulation software, are used throughout the course.

https://www.analog.com/en/designcenter/design-tools-and-calculators/ltspicesimulator.html

Learning Objectives

By using the information and exercises in this chapter you will be able to:

- 1. Understand the different units with which engineers work.
- 2. Understand the relationship between charge and current and how to use both in a variety of applications.
- 3. Understand voltage and how it can be used in a variety of applications.
- 4. Develop an understanding of power and energy and their relationship with current and voltage.
- 5. Begin to understand the volt-amp characteristics of a variety of circuit elements.
- 6. Begin to understand an organized approach to problem solving and how it can be used to assist in your efforts to solve circuit problems.

วัตถุประสงค์การเรียนรู้

โดยใช้ข้อมูลและแบบฝึกหัดในบทนี้ นักเรียนจะสามารถ:

- 1. เข้าใจหน่วยต่าง ๆ ที่เกี่ยวกับงานด้านวิศวกรรม
- 2. เข้าใจความสัมพันธ์ระหว่างประจุไฟฟ้ากับ กระแสไฟฟ้าและวิธีการใช้งานที่หลากหลายแอพ พลิเคชัน
- 3. เข้าใจเกี่ยวกับแรงดันไฟฟ้าและวิธีการใช้งานที่ หลากหลายแอพพลิเคชัน
- 4. พัฒนาความเข้าใจเกี่ยวกับกำลังงานไฟฟ้าและ พลังงานไฟฟ้าและความสัมพันธ์กับกระแสไฟฟ้า และแรงดันไฟฟ้า
- 5. เริ่มเข้าใจลักษณะโวลต์-แอมป์ในอุปกรณ์ต่างๆใน วงจรไฟฟ้า
- 6. เริ่มเข้าใจแนวทางการแก้ปัญหาอย่างเป็นระบบ และนำไปใช้เพื่อช่วยแก้ปัญหาวงจรไฟฟ้าได้

Basic Concepts- Chapter 1

- Introduction
- Systems of Units
- Charge and Current
- Voltage
- Power and Energy
- Circuit Elements
- Applications

1.1 Introduction

An electric circuit is an interconnection of electrical elements.

6

1.2 System of Units (1)

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd

1.2 System of Units (2)

TABLE 1.2

The SI prefixes.

Multiplier	Prefix	Symbol
10 ¹⁸	exa	Е
10^{15}	peta	P
10^{12}	tera	T
10 ⁹	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	С
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C). ประจุ คือ คุณสมบัติทางไฟฟ้าของอนุภาคอะตอมที่ประกอบเป็น สสาร มีหน่วยเป็นคูลอมบ์

The electronic charge e on one electron is negative and equal to 1.602×10^{-19} C. The charges that occur in nature are integral multiples of the electronic charge.

ประจุอิเล็คทรอนิกส์ e ของอิเล็คตรอน 1 ตัวมีค่า ประจุ -1.602×10^{-19} คูลอมซ์ ประจุที่เกิดขึ้น ในธรรมชาติเกิดจากประจุอิเล็คทรอนิกส์หลายๆตัว รวมกัน

1.3 Current (2)

- The coulomb is a large unit for charges. In 1 C of charge, there are $1/(1.602 \times 10^{-19})$ = 6.24×10^{18} electrons.
- ☐ According to experimental observations, the only charges that occur in nature are integral multiples of the electronic charge e= -1.602×10^{-19} C.
- ☐ The law of conservation of charge states that charge can neither be created nor destroyed, only transferred. Thus, the algebraic sum of the electric charges in a system does not change.

Electric current due to flow of electronic charge in a conductor.

1.3 Current (3)

Current $i = \frac{dq}{dt}$ (อัตราการเปลี่ยนแปลงประจุ ไฟฟ้าเทียบกับเวลา). The unit of ampere can be derived as 1A = 1C/s

A direct current (DC) is a current that remains constant with time.

An alternating current (AC) is a current that changes direction with respect to time.

1.3 Current (4)

(a, b) Incomplete, improper, and incorrect definitions of a current. (c) The correct definition of $i_1(t)$.

1.3 Current (5)

► A current of -5 A flowing as shown in Fig.(b) is the same as a current of +5 A flowing in the opposite direction as shown in Fig.(a).

Conventional current flow: (a) positive current flow, (b) negative current flow.

1.3 Current (6)

PRACTICE

In the wire of Fig. 2.7, electrons are moving *left* to *right* to create a current of 1 mA. Determine I_1 and I_2 .

$$\frac{\longrightarrow I_1}{I_2 \longleftarrow}$$

FIGURE 2.7

1.3 Current (7)

Ex.1 A conductor has a constant current of 5 A. How many electrons pass a fixed point on the conductor in one second?

$$5 C/s$$

$$1.602 \times 10^{-19} C/electron$$

$$= 3.121 \times 10^{19} electron/s$$

1.4 Voltage (1)

- Voltage (or potential difference) is the energy required to move a unit charge through an element, measured in volts (v, V).
- Mathematically, $v_{ab} = \frac{dw}{dq}$ (Volt)
 - \triangleright w is energy in joules (J) and q is charge in coulomb (C).
- ightharpoonup Electric voltage, v_{ab} , is always across the circuit element or between two points in a circuit.
 - v_{ab} > 0 means the potential of a is higher than potential of b.
 - v_{ab} < 0 means the potential of a is lower than potential of b.

1.5 Power and Energy (1)

Reference polarities for power using the passive sign convention: (a) absorbing power, (b) supplying power.

• Power is the time rate of expending or absorbing energy $(\frac{dw}{dt})$, measured in Watts.

$$p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = v \cdot i$$

1.5 Power and Energy (2)

Two cases of an element with an absorbing power of 12 W: (a) $p = 4 \times 3 = 12$ W, (b) $p = 4 \times 3 = 12$ W.

Two cases of an element with a supplying power of 12 W: (a) $p = -4 \times 3 = -12$ W, (b) $p = -4 \times 3 = -12$ W.

1.5 Power and Energy (3)

The law of conservation of energy (the algebraic sum of power in a circuit, at any instant of time, must be zero)

$$\sum p = 0$$

Energy is the capacity to do work, measured in joules (J).

$$w = \int_{t_0}^{t} p dt = \int_{t_0}^{t} VIdt$$

The electric power utility companies measure energy in Watt-hours (Wh), where 1 Wh = 3,600 J

1.6 Circuit Elements (1)

- 1. A voltage-controlled voltage source (VCVS).
- 2. A current-controlled voltage source (CCVS).
- 3. A voltage-controlled current source (VCCS).
- 4. A current-controlled current source (CCCS).

- A dependent source (b)(d) is an active element in which the source quantity is controlled by another voltage or current.
- They have four different types: VCVS, CCVS, VCCS, CCCS. Keep in minds the signs of dependent sources.

1.6 Circuit Elements (2)

 Ex.2 Find i and the power absorbed by each element in the network

1.6 Circuit Elements (3)

•Ex.3 Find Vo and the power absorbed by each element in the circuit

1.7 Applications (TV Picture Tube)

Cathode-ray tube (CRT)

1.7 Applications (Electricity Bills)

The cost of electricity depends upon the amount of energy consumed in kilowatt-hours (kWh)

Other factors that affect the cost include demand and power factors; we will ignore these for now

Typical average monthly consumption of household appliances. (for a family of five)

Appliance	kWh consumed	Appliance	kWh consumed
Water heater	500	Washing machine	120
Freezer	100	Stove	100
Lighting	100	Dryer	80
Dishwasher	35	Microwave oven	25
Electric iron	15	Personal computer	12
TV	10	Radio	8
Toaster	4	Clock	2

https://www.egat.co.th/home/egat-price/

1.7 Applications (Electricity Bills)

- Ex.5 A homeowner consumes 700 kWh in January. Determine the electricity bill for the month using the following residential rate schedule:
- Base monthly charge of \$12.00.
- First 100 kWh per month at 16 cents/kWh.
- Next 200 kWh per month at 10 cents/kWh.
- Over 300 kWh per month at 6 cents/kWh.

Solution:

We calculate the electricity bill as follows.

Base monthly charge = \$12.00

First 100 kWh @ \$0.16/k Wh = \$16.00

Next 200 kWh @ \$0.10/k Wh = \$20.00

Remaining 400 kWh @ \$0.06/k Wh = \$24.00

Total charge = \$72.00

Average cost =
$$\frac{\$72}{100 + 200 + 400}$$
 = 10.2 cents/kWh

Summary

- 1) Circuit หรือวงจรไฟฟ้าประกอบด้วย Elements ทางไฟฟ้า (R,L,C,V,I เป็นต้น<mark>) ที่เชื่อมต่อ<mark>กัน</mark></mark>
- 2) SI Unit หรือระบบหน่วยเอสไอเป็นภาษาการวัดระดับนานาชาติที่ช่วยให้วิศวกรสามารถสื่อสาร ผลลัพธ์ของพวกเขาได้ จากหน่วยหลัก 7 หน่วย สามารถได้หน่วยของปริมาณทางกายภาพอื่นๆ ได้
- 3) Current (i) คืออัตราการไหลของปริมาณประจุผ่านจุดที่กำหนดในทิศทางที่กำหนด ($i=rac{dq}{dt}$)
- 4) Voltage คือพลังงานที่ต้องใช้ในการเคลื่อนประจุ 1C จากจุดอ้างอิง (-) ไปยังจุดอื่น (+) ($v_{ab}=rac{dw}{da}$)
- 5) Power หรือกำลังงานไฟฟ้า ($p=rac{dw}{dt}=v\cdot i$) คือพลังงานที่จ่ายออก (-) หรือดูดซับเข้า (+) ต่อหน่วยเวลา หรือคือผลคูณของ v และ i
- 6) Power มีค่าเป็นบวก (+) เมื่อกระแสไหลเข้าขั้วบวกของแรงดันไฟฟ้า
- 7) Voltage source จะสร้างความแตกต่างศักย์ที่แน่นอนที่ขั้วทั้งสองไม่ว่าเชื่อมต่อกับอะไรก็ตาม และ current source จะสร้างกระแสที่แน่นอนผ่านทางสายที่เชื่อมต่อไม่ว่าจะเชื่อมต่อกับอะไรก็ตาม
- 8) Voltage source และ current source สามารถเป็น dependent หรือ independent source ได้ โดย dependent source จะมีค่าที่ขึ้นอยู่กับตัวแปรอื่นๆในวงจร

1.7 Applications (Electricity Bills)

บ้านอยู่อาศัย ประเภท 1.1 อัตราปกติปริมาณการใช้พลังงานไฟฟ้าไม่เกิน 150 หน่วยต่อเดือน

ค่าพลังงานไฟฟ้า		
15 หน่วย (กิโลวัตต์ชั่วโมง) แรก (หน่วย ที่ 1 – 15)	หน่วยละ	2.3488 บาท
10 หน่วยต่อไป (หน่วยที่ 16 – 25)	หน่วยละ	2.9882 บาท
65 หน่วยต่อไป (หน่วยที่ 36 – 100)	หน่วยละ	3.2405 บาท
50 หน่วยต่อไป (หน่วยที่ 101 – 150)	หน่วยละ	3.7171 บาท
250 หน่วยต่อไป (หน่วยที่ 151 – 400)	หน่วยละ	4.2218 บาท
เกินกว่า 400 หน่วย (หน่วยที่ 401 เป็น ค้นไป)	หน่วยละ	4.4217 บาท
ค่าบริการ (บาท/เดือน) :	8.19	
nibania (binawas) :		

บ้านพักอาศัย ประเภท 1.2 อัตราปกติปริมาณการใช้พลังงานไฟฟ้าเกินกว่า 150 หน่วยต่อเดือน

ค่าพลังงานไฟฟ้า			
150 หน่วย (กิโลวัทท์ชั่วโมง) แรก (หน่วยที่ 1 – 150)	หน่วยละ	3.2484 บาท	
250 หน่วยต่อไป (หน่วยที่ 151 – 400)	หน่วยละ	4.2218 บาท	
เกินกว่า 400 หน่วย (หน่วยที่ 401 เป็น ตั้นไป	หน่วยละ	4.4217 บาท	
ค่าบริการ (บาท/เดือน)	38.22		