

Electrical Engineering 1 12026105 Chapter 11 AC Power Analysis

Learning Objectives

By using the information and exercises in this chapter you will be able to:

- 1. Fully understand instantaneous and average power.
- 2. Understand the basics of maximum average power.
- 3. Understand effective or rms values and how to calculate them and to understand their importance.
- 4. Understand apparent power (complex power), power, and reactive power and power factor.
- 5. Understand power factor correction and the importance of its use.

วัตถุประสงค์การเรียนรู้

โดยใช้ข้อมูลและแบบฝึกหัดในบทนี้ นักเรียนจะสามารถ:

- 1. เข้าใจกำลังงานชั่วขณะและกำลังงานเฉลี่ย
- 2. เข้าใจพื้นฐานของกำลังงานเฉลี่ยสูงสุด
- 3. เข้าใจค่าประสิทธิผลหรือค่า rms และวิธีการคำนวณเพื่อเห็นถึง ความสำคัญ
- 4. เข้าใจกำลังงานปรากฏ (กำลังงานเชิงซ้อน) กำลัง และปฏิกิริยากำลังและ ตัวประกอบกำลัง
- 5. เข้าใจ power factor correctionและการใช้งานมัน

AC Power Analysis Chapter 11

- Instantaneous and Average Power
- Maximum Average Power Transfer
- Effective or RMS Value
- Apparent Power and Power Factor
- **Complex Power**
- **Conservation of AC Power**
- Power Factor Correction
- Power Measurement

• The instantaneously power, p(t)

$$p(t) = v(t) i(t) = V_m I_m \cos(\omega t + \theta_v) \cos(\omega t + \theta_i)$$

$$= \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$
Constant power
Sinusoidal power at $2\omega t$

$$p(t)$$

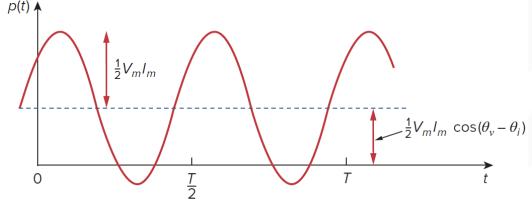
$$\frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

p(t) > 0: power is absorbed by the circuit;

p(t) < 0: power is absorbed by the source.

• The average power, P, is the average of the instantaneous power over one period.

$$P = \frac{1}{T} \int_0^T p(t) dt = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$



The instantaneous power p(t) entering a circuit.

- p(t) is time-varying while P does not depend on time.
- When $\theta_v = \theta_i$, the voltage and current are in phase. This implies a purely resistive circuit.
- When θ_v θ_i = $\pm 90^\circ$, This implies a purely reactive circuit.
- A purely reactive circuit absorbs no average power. $P = \frac{1}{2}V_m I_m \cos 90^\circ = 0$
- A resistive load (R) absorbs power at all times, while a reactive load (L or C) absorbs zero average power.

Example 1

Calculate the instantaneous power and average power absorbed by a passive linear network if:

$$v(t) = 80\cos (10t + 20^{\circ})$$

 $i(t) = 15\sin (10t + 60^{\circ})$

$$i(t) = 15 \sin (10t + 60^{\circ}) = 15 \cos(10t + 60^{\circ} - 90^{\circ}) = 15 \cos(10t - 30^{\circ})$$

Example 2

A current I = $10\angle30^\circ$ flows through an impedance Z = $20\angle - 22^\circ$. Find the average power delivered to the impedance.

$$V = IZ = 200 \angle 8^{\circ}$$

$$P = \frac{V_m I_m}{2} \cos(\theta_V - \theta_I) = \frac{200 \times 10}{2} \cos(8 - 30) = 927.2W$$

Answer: 927.2 W

11.2 Maximum Average Power Transfer

The current through the load is

$$I = \frac{V_{Th}}{Z_{Th} + Z_L} = \frac{V_{Th}}{(R_{Th} + jX_{Th}) + (R_L + jX_L)}$$
(11.14)

From Eq. (11.11), the average power delivered to the load is

$$P = \frac{1}{2} |\mathbf{I}|^2 R_L = \frac{|\mathbf{V}_{Th}|^2 R_L / 2}{(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2}$$
(11.15)

Our objective is to adjust the load parameters R_L and X_L so that P is maximum. To do this we set $\partial P/\partial R_L$ and $\partial P/\partial X_L$ equal to zero. From Eq. (11.15), we obtain

$$\frac{\partial P}{\partial X_L} = -\frac{|\mathbf{V}_{Th}|^2 R_L (X_{Th} + X_L)}{[(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2]^2}$$
(11.16a)

$$\frac{\partial P}{\partial R_L} = \frac{|\mathbf{V}_{Th}|^2 [(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2 - 2R_L(R_{Th} + R_L)]}{2[(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2]^2}$$
(11.16b)

(11.14) Setting $\partial P/\partial X_L$ to zero gives

$$X_L = -X_{\rm Th}$$
 (11.17)

and setting $\partial P/\partial R_L$ to zero results in

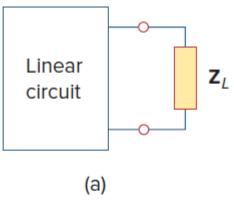
$$R_L = \sqrt{R_{\rm Th}^2 + (X_{\rm Th} + X_L)^2}$$
 (11.18)

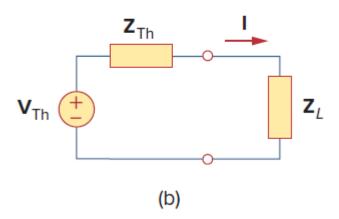
Combining Eqs. (11.17) and (11.18) leads to the conclusion that for maximum average power transfer, \mathbf{Z}_L must be selected so that $X_L = -X_{\text{Th}}$ and $R_L = R_{\text{Th}}$, i.e.,

$$\mathbf{Z}_L = R_L + jX_L = R_{\text{Th}} - jX_{\text{Th}} = \mathbf{Z}_{\text{Th}}^*$$
 (11.19)

For maximum average power transfer, the load impedance \mathbf{Z}_{l} must be equal to the complex conjugate of the Thevenin impedance \mathbf{Z}_{Th} .

11.2 Maximum Average Power Transfer





Finding the maximum average power transfer: (a) circuit with a load, (b) the Thevenin equivalent.

$$Z_{TH} = R_{TH} + jX_{TH}$$
$$Z_{L} = R_{L} + jX_{L}$$

The maximum average power can be transferred to the load if

$$X_L = -X_{TH}$$
 and $R_L = R_{TH}$

$$P_{max} = \frac{\left|V_{TH}\right|^2}{8R_{TH}}$$

If the load is purely real, then
$$R_L = \sqrt{R_{TH}^2 + X_{TH}^2} = |Z_{TH}|$$

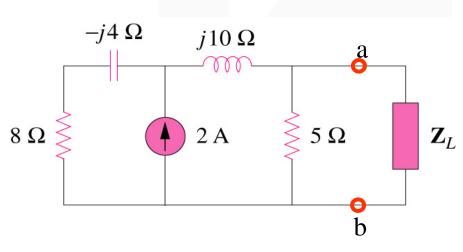
11.2 Maximum Average Power Transfer

Example 3

For the circuit shown below, find the load impedance Z_L that absorbs the maximum average power. Calculate that maximum average power.

$$V_{TH} = \frac{8 - J4}{8 - J4 + 5 + J10} \times 5 = \frac{200(4 - J5)}{205} = 0.9756(4 - J5)$$

$$Z_{TH} = 5 \parallel 8 + J6 = \frac{5(8 + J6)}{13 + J6} = \frac{700 + J150}{205} = 3.415 + J0.7317$$



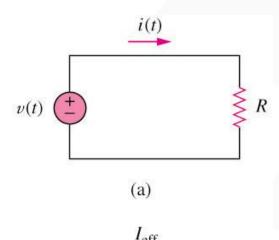
$$Z_L = \overline{Z_{TH}} = 3.415 - J0.7317$$

$$P_{max} = \frac{|V_{TH}|^2}{8R_{TH}}$$

$$P_{max} = \frac{|0.9756(4 - J5)|^2}{8 \times 3.415} = 1.429$$

11.3 Effective or RMS Value

The idea of effective value arises from the need to measure the effectiveness of a voltage or current source in delivering power to a resistive load.



(b)

The total power dissipated by R is given by:

$$P = \frac{1}{T} \int_0^T i^2 R dt = \frac{R}{T} \int_0^T i^2 dt = I_{rms}^2 R$$

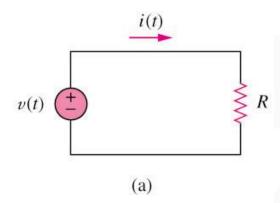
Hence,
$$I_{eff}$$
 is equal to: $I_{eff} = \sqrt{\frac{1}{T} \int_{0}^{T} i^2 dt} = I_{rms}$

The effective value of a periodic signal is its root mean square (rms) value.

The effective value of a periodic current is the dc current that delivers the <u>same average power</u> to a resistor as <u>the periodic current</u>.

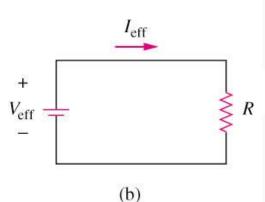
BEYOND THE LIMIT

11.3 Effective or RMS Value



The rms value of a sinusoid $i(t) = I_m cos(\omega t)$ is given by:

$$I_{\rm rms}^2 = \frac{I_{\rm m}}{\sqrt{2}}$$



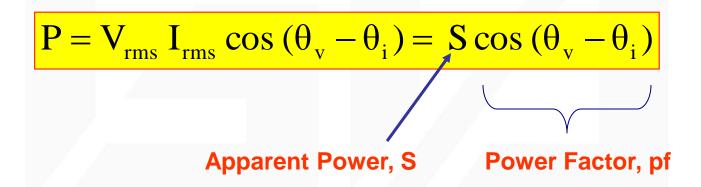
The average power can be written in terms of the rms values:

$$I_{eff} = \frac{1}{2} V_{m} I_{m} \cos(\theta_{v} - \theta_{i}) = V_{rms} I_{rms} \cos(\theta_{v} - \theta_{i})$$

Note: If you express amplitude of a phasor source(s) in rms, then all the answer as a result of this phasor source(s) must also be in rms value.

11.4 Apparent Power and Power Factor

- Apparent Power, S, is the product of the r.m.s. values of voltage and current.
- It is measured in volt-amperes or VA to distinguish it from the average or real power which is measured in watts.

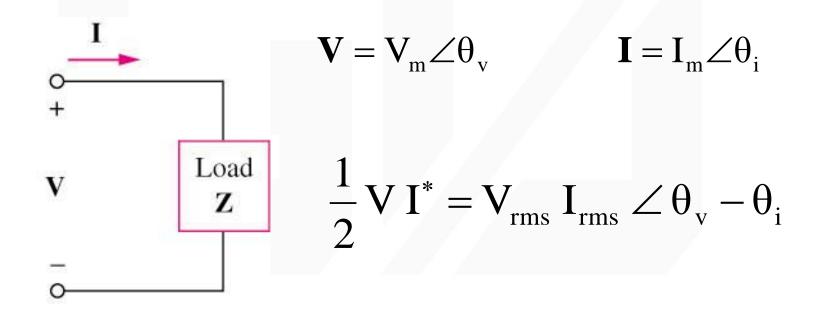


• Power factor is the cosine of the <u>phase difference between the voltage and current</u>. It is also the cosine of the <u>angle of the load impedance</u>.

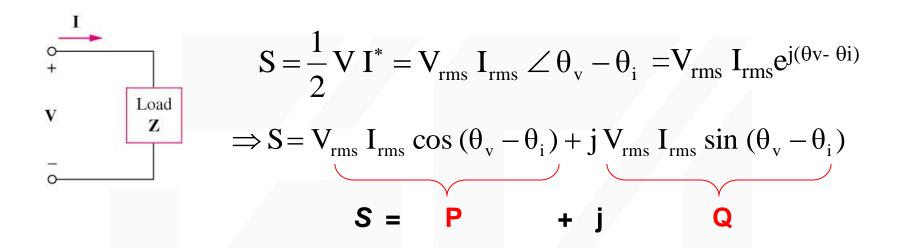
11.4 Apparent Power and Power Factor

Purely resistive load (R)	$\theta_{v} - \theta_{i} = 0$, $Pf = 1$	P/S = 1, all power are consumed
Purely reactive load (L or C)	$\theta_{\rm v} - \theta_{\rm i} = \pm 90^{\rm o}, \text{pf}$ $= 0$	P = 0, no real power consumption
Resistive and reactive load (R and L/C)	$\theta_{v} - \theta_{i} > 0$ $\theta_{v} - \theta_{i} < 0$	 <u>Lagging</u> - inductive load <u>Leading</u> - capacitive load

Complex power **S** is the product of the voltage and the complex conjugate of the current:



11.5 Complex Power

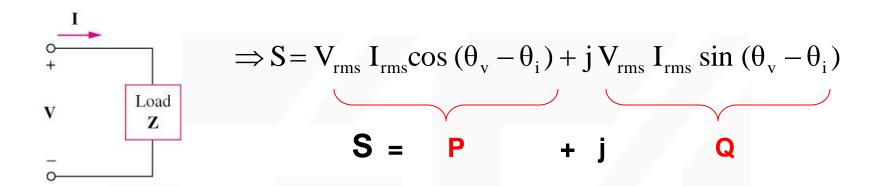


P: is the <u>average power in watts</u> delivered to a load and it is the only useful power.

Q: is the <u>reactive power exchange</u> between the source and the reactive part of the load. It is measured in VAR.

- Q = 0 for resistive loads (unity pf).
- Q < 0 for *capacitive loads* (leading pf).
- Q > 0 for *inductive loads* (lagging pf).

11.5 Complex Power



Apparent Power,
$$S = |\mathbf{S}| = Vrms*Irms = \sqrt{P^2 + Q^2}$$

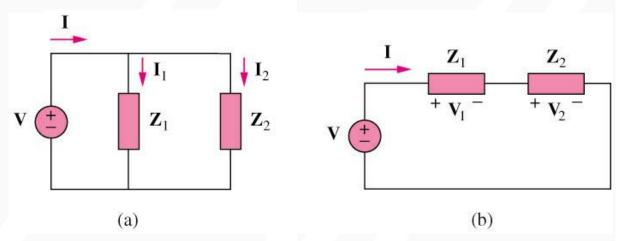
Real power, $P = Re(\mathbf{S}) = S \cos(\theta_v - \theta_i)$
Reactive Power, $Q = Im(\mathbf{S}) = S \sin(\theta_v - \theta_i)$
Power factor, $pf = P/S = \cos(\theta_v - \theta_i)$

11.5 Complex Power



11.6 Conservation of AC Power

The complex real, and reactive powers of the sources <u>equal</u> the respective <u>sums of</u> the complex, real, and reactive powers of the individual loads.



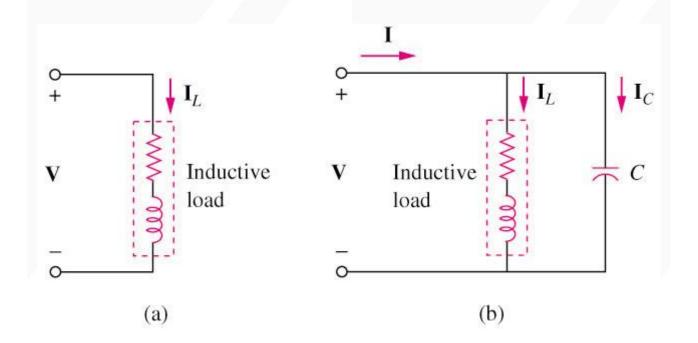
For parallel connection:

$$\overline{S} = \frac{1}{2} \overline{V} \overline{I^*} = \frac{1}{2} \overline{V} (\overline{I_1^*} + \overline{I_2^*}) = \frac{1}{2} \overline{V} \overline{I_1^*} + \frac{1}{2} \overline{V} \overline{I_2^*} = \overline{S_1} + \overline{S_2}$$

The <u>same results</u> can be obtained for a <u>series connection</u>.

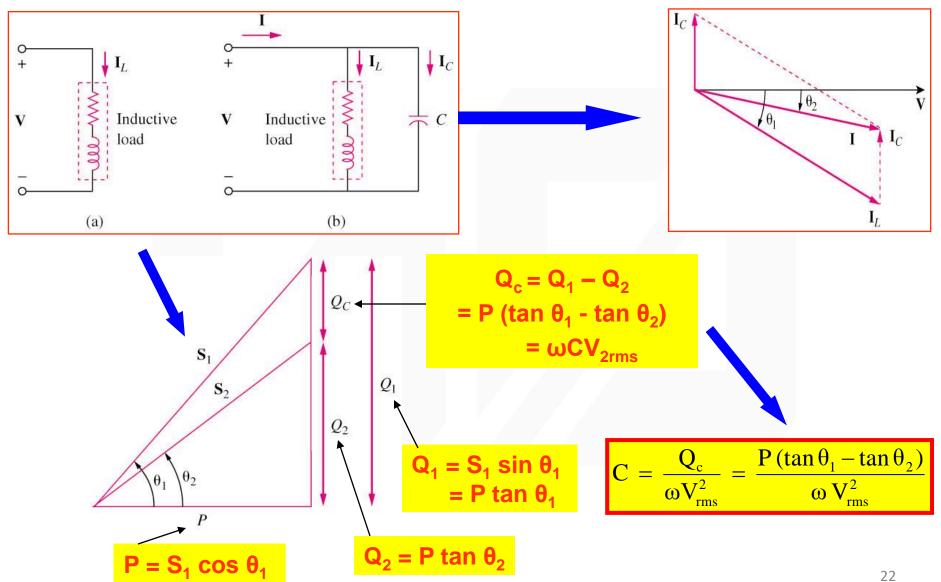
11.7 Power Factor Correction

<u>Power factor correction</u> is the process of <u>increasing</u> the power factor <u>without altering</u> the voltage or current to the original load.



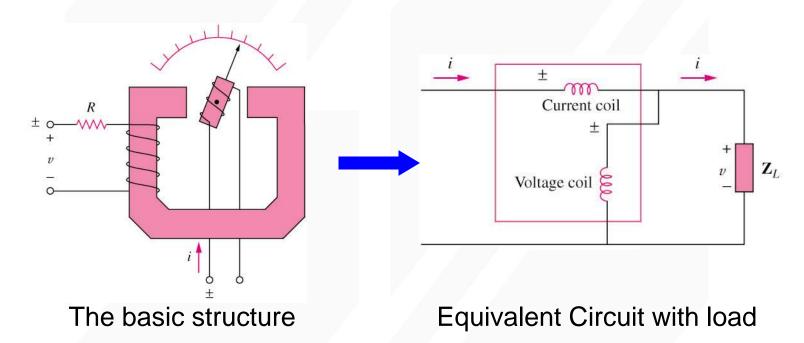
Power factor correction is necessary for economic reason.

11.7 Power Factor Correction



11.8 Power Measurement

The <u>wattmeter</u> is the instrument for measuring the average power.



If $v(t) = V_m \cos(\omega t + \theta_v)$ and $i(t) = I_m \cos(\omega t + \theta_i)$

$$P = |V_{rms}| |I_{rms}| \cos(\theta_{v} - \theta_{i}) = \frac{1}{2} V_{m} I_{m} \cos(\theta_{v} - \theta_{i})$$