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Double Integrals (5ufinfasesty)

Definition 9.10.1 The Double Integral
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import numpy as np
from scipy import integrate

integrate.dblquad(f, -2, 1, 1,

f = lambda x, y: 4 * x**3 + 6 * x * y**2

3)




Properties of Double Integrals
“
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Double Integrals (Bufinfasatu)
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import sympy as sp
X, y = sp.symbols('x y'")
sp.integrate (sp.integrate(sp.exp (xt3*y), (X,v,5-vy)), (y,1,2)) .evalf ()
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import sympy as sp
X, Yy = sp.symbols('x y')
sp.integrate (sp.integrate (6-2*x-vy, (y,0,6-2*x)), (x,0,3)) .evalf ()
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import scipy.integrate as spi
import numpy as np

sol, = spi.dblquad(lambda x, y: 4 - vy, -2, 2,
lambda y: -np.sqgrt(4 - y**2),
lambda y: np.sqgrt(4 - y**2))

print (sol)
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3 import scipy.integrate as spi

import numpy as np

spi.dblquad(lambda x, y: np.sqgrt(4 - y**2), 0, 2,
lambda y: O,
lambda y: np.sqgrt(4 - y**2))




nsulasfandsaninnnanlunnate”
(Change of Variables: Rectangular to Polar Coordinates)

 Polar coordinates (7, 8) of a point are related to the
rectangular coordinates (x,y) by the equations




Cylindrical Coordinates (#ifanssnszuan)
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Cylindrical Coordinates (fAfawnssnszuan)
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Spherlcal Coordinates (#nansinau)
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Converting Coordinates (nsudasiiia)

msdufinfasuduluszuudiansenan (Triple Integrals in Spherical Coordlnates)
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Converting Coordinates (nsudasiiia)
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Double Integrals in Polar Coordinates
(Bufinfasestuluiiniletn)

Double integral may be easier to evaluate (Transform rectangular xy-co. into polar 8-co.)
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Change of Variables: Rectangular to Polar Coordinates
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Double Integrals in Polar Coordinates
(Bufinfasesduluifinideta)
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x2+y?%2=25
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spi.dblquad(lambda x, y:
lambda y:

lambda y:

import scipy.integrate as spi, numpy as np

25 - X**2 - y**2,
-np.sqrt (25 - y**2)
np.sqgrt (25 - y**2))
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import scipy.integrate as spi
Import numpy as np
spi.dblquad(lambda x,y:1l-x**2-y**2,0,1,lambda y:0, lambda y:np.sqrt(l-y**2))
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import scipy.integrate as spi
import numpy as np
result, error spi.dblgquad (

lambda x, y: np.sqgrt(4 - x**2 - y**2), # Integrand function
-1, 1, # Limits for x

lambda y: 1 - np.sqrt(l - y**2), # Lower limit for y
lambda y: 1 + np.sqgrt(l - y**2) # Upper limit for y)

2 * result
E L o= = T

final result
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Why r = 2cos(0) ?

y (x—1)2%+y2=r2=1

r=2cos  \We use the polar coordinate transformations:
\R\\\ / x=rcosf, y=rsinf

Substituting into the given equation:

(r cos 6—1)2 + r2sin26=1

b 20 . D
/ . o \ r2cos20-2r cos O+1+12sin?H=1
o (x—1)"+y=
X:+yti=4
2= cos 6=0
The small circle 1s the domain R
of the integral r(r—2 cos 6)=0

=2 cos 6
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A9819 3emAduiinsamarilneuwdasiuusiduninndeds (polar coordinates)

r? + y? dy dx

3 pV9—x2
/:; ./u

import numpy as np

import scipy.integrate as spi
spi.dblgquad(lambda x,y: np.sqgrt (x**2+y**2),-3,3,0,lambda x: np.sqgrt (9-x**2))

1 py/1—9y2 I,
/ / eT Y dr dy
Jo Jo

import numpy as np
import scipy.integrate as spi
spi.dblquad(lambda x,y: np.exp(x**2+y**2),0,1,0,lambda y: np.sqgrt(l-y**2))

WUE pr—iP o
/ / sin(z” + y*) dy dx
J—/mJO

import numpy as np

import scipy.integrate as spi
spi.dblquad(lambda x,y: np.sin (x**2+y**2), -np.sqrt (np.pi),np.sqgrt (np.pi), 0, lambda x: np.sqgrt(np.pi-x**2))



G819 swnaduiindamanileoulasuusduiifinged (polar coordinates)
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from sympy import symbols, sqgrt, integrate

X, y = symbols('x y"')

fun = y**2 / (sqrt(x**2 + y**2))

xmax = sgrt(l - y**2) ; xmin =y

integrate (integrate (fun, (x, xmin, xmax) ), (y,0,sqgrt (2)/2)) .evalf ()

V25 —a2
/ / (4x + 3y) dy dx

import numpy as np
from scipy.integrate import dblquad
def fun(y, x):# Define the function to integrate
return 4*x + 3*y
def ymax (x):# Define the upper limit for vy
return np.sqrt (25 - x**2)
dblguad (fun, -5, 5, lambda x: 0, ymax)# Compute the double integral



semAduiinsamarilneuiasiuusidufinndets (polar coordinates)

EXAMPLE Evaluate ([, (3x + 4y*)dA, where R is the region in the upper half-plane
bounded by the circles x> + y* = 1 and x* + y~ = 4.

from sympy import symbols, sqgrt, integrate

X, y = symbols('x y')

fun = 3*x + 4*y**2

ymax = sqrt (4 - x**2) ; ymin = sqgrt(l - x**2)

sl= integrate (integrate (fun, (y,0,ymax)), (x,-2,2))
s2= integrate (integrate (fun, (y,0,ymin)), (x,-1,1))
sol = sl - s2

print ("Integral result:", sol)

import numpy as np
from scipy.integrate import dblquad
# Define the function
def f(r, theta):
return r * (3 * np.cos(theta) + 4 * (r * np.sin(theta)) ** 2)

# Compute the double integral
sol= dblquad(f, 0, np.pi, 1, 2)
# Print result

print ("Integral result:", sol)
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// (x +vy)dA

J- —sin*0do = fsin39 dcosf = sin36 cos  — f cos O dsin30 = sin30 cos§ — 3 f sin?0cos?0dO = sin360 cos § — 3 f sin?6(1 — sin?8)d6

3 3
= sin3@ cosf — 3 f sin?0de + 3 f sin*0d0 = sin36 cos O — 59 - Zsin 20 +3 f sin*0de
import numpy as np

3 3
ff—yﬁ@de:shﬁ9m59—59+19n29 from scipy.integrate import dblquad
s def fun(x, y): return x + y
) sin°@ cosf 3 3
f—snﬁ&w :___Z__“_§9+I€$n29 def xmax(y): return np.sqrt(4 - y**2)
def xmin(y): return np.sqgrt(l - (y - 1)**2)
sol, = dblgquad (fun, 0, 2, xmin, xXmax)

print ("Integral result:", sol)
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import numpy as np
from scipy.integrate import dblquad
def fun(x, y): return np.exp(—-x**2 - y**2)

gl dblgquad (fun, 0, np.inf, lambda y: 0, lambda y: np.inf)

np.sqrt (sol)




A2819 2sUTImInelunsenszuen x2 + y2 = 4 uazgingss (ellipsoid) 2x2 + 2y? + 72 = 18
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import numpy as np
from scipy.integrate import dblqguad
def fun(x, y): return np.sqrt(l8 - 2*x**2 - 2%y**2)

def xmin(y): return -np.sqrt(4 - y**2)
def xmax(y): return np.sqgrt(4 - y**2)
sol, = dblquad (fun, -2, 2, xmin, xmax)

print ("Integral result:", sol)
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import numpy as np

from scipy.integrate import dblquad

def f(r, theta): return r

def rmax(theta): return 3 + 2 * np.cos(theta)
sol, = dblquad(f, 0, 2 * np.pi, lambda theta:

print?"Integral result:", sol)

0,

rmax)

Polar
axis

r=3+2cos 6

16=0

Polar
dXIS

r=3+2cosf

Infinitesimal sectors
fromfd =0told =x



V2= y(l—x — y2) dxdy

GI’JE]EJ’N ﬁ]qmmauwma f f

22
/ / (1 — 22 —y?)dx dy

"‘l 2sin # cscH
— / / (1 —7r° /(// (/H—{— / (1 —7r )/'(//'(/H
2sin#

p csc

w/4 / ' ‘
' | ] l 1
_/ 1o _La ,m+/ L
J0 2 4 4 “) 4
0

/4
:/ (Mm 0 — 4sin® (/H*/

()

l l
<— %l = —«.«-‘ﬁ> dp
2 4
. B oo 3 ; e .
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r=csct

r=2sinf
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] polar

axis

import numpy as np
from scipy.integrate import dblquad

def fun(r, theta): return r * (1 - r**2)
sl, = dblquad(fun, 0, np.pi/4, lambda theta: 0, lambda theta: 2 * np.sin(theta))
s2, = dblgquad(fun, np.pi/4, np.pi/2, lambda theta: 0, lambda theta: 1 / np.sin(theta))

sol = sl + s2
print ("Integral result:", sol)




- = 281nf

>

axis

polar

x2+(y-12=r?=1
We use the polar coordinate transformations:
x=rcosf, y=rsinf

Substituting into the given equation:
r2c032<9+(r sin (9—1)2=1
r2cos20+12sin26—2r sin O +1=1
227 sin =0
r(r—2 sin §)=0

r=2sin 6
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