

Electrical Engineering 1

E+12026105 = mc2 ds≥0

df = 1in

Learning Objectives

By using the information and exercises in this chapter you will be able to:

- Understand solutions to unforced, first-order linear differential equations.
- 2. Comprehend singularity equations and know their importance in solving linear differential equations.
- 3. Understand the effect of unit step sources on first-order linear differential equations.
- 4. Explain how dependent sources and op amps influence simple first-order linear differential equations.
- 5. Use *PSpice* to solve simple transient circuits with an inductor or a capacitor.

First-Order Circuits

- 7.1 The Source-Free RC Circuit (วงจร RC ที่ไม่มีแหล่งจ่าย)
- 7.2 The Source-Free RL Circuit (วงจร RL ที่ไม่มีแหล่งจ่าย)
- 7.3 Singularity Functions (Switching Functions)
- 7.4 Step Response of an RC Circuit (วงจร RC ที่มีแหล่งจ่าย)
- 7.5 Step Response of an RL Circuit (วงจร RC ที่มีแหล่งจ่าย)

A first-order circuit is characterized by a first-order

differential equation.

 $C = \begin{array}{c} \bullet \\ + \\ v \\ - \end{array}$

By taking KCL at top node

$$i_{R} + i_{C} = 0 \rightarrow \frac{v}{R} + C \frac{dv}{dt} = 0$$
Ohms law
$$\frac{dv}{v} = -\frac{dt}{RC}$$

$$\ln(v) = -\frac{t}{RC} + Cont$$

$$v = e^{\left(-\frac{t}{RC} + Cont\right)} = V_{o}e^{\left(-\frac{t}{RC}\right)}$$

- Apply Kirchhoff's laws to <u>purely resistive circuit</u> results in <u>algebraic equations</u>.
- Apply the laws to RC and RL circuits produces <u>differential equations</u>.

The natural response of a circuit refers to the behavior (in terms of voltages and currents) of the circuit itself, with no external sources of excitation.

- The time constant τ of a circuit is the time required for the response to decay by a factor of 1/e or 36.8% of its initial value.
- ullet ${\cal V}$ decays faster for small ${f au}$ and slower for large ${f au}$.

The key to working with a source-free RC circuit is finding:

$$v(t) = V_0 e^{-t/\tau}$$
 where $\tau = RC$

$$\tau = RC$$

- 1. The initial voltage $v(0) = V_0$ across the capacitor.
- 2. $\tau = RC$

Ex.1 Refer to the circuit below, determine v_C , v_x , and i_0 for $t \ge 0$. Assume that $v_C(0) = 60$ V.

$$v_{C}(t) = V_{o}e^{-\frac{t}{\tau}} = 60e^{-\frac{t}{4}} \qquad v_{x}(t) = 8i_{o} + v_{C}(t)$$

$$= -40e^{-\frac{t}{4}} + 60e^{-\frac{t}{4}} = 20e^{-\frac{t}{4}}$$

$$i_{o}(t) = C\frac{dv_{C}}{dt} = -5e^{-\frac{t}{4}}$$

$$\underline{Answer:} \quad v_{C} = 60e^{-0.25t} \, \text{V}; \quad v_{x} = 20e^{-0.25t} \, \text{V}; \quad i_{o} = -5e^{-0.25t} \, \text{A}$$

Ex.2 The switch is opened at t = 0, find v(t) for $t \ge 0$.

 $\underline{\text{Answer: }} v(t) = 8e^{-2t} \, \mathbf{V}$

Ex.3 Find for $v_0(t)$ for t>0. Determine the time for the capacitor voltage to decay to one-third of its value at t=0

Answer: $v(t) = 9e^{-t/0.06}$ V; t = 0.066 s

A first-order RL circuit consists of L and R (or their equivalent)

By KVL
$$v_L + v_R = 0 \longrightarrow L \frac{di}{dt} + iR = 0$$
Inductors law Ohms law

$$\frac{di}{i} = -\frac{R}{L}dt$$

$$i(t) = I_0 e^{-\left(\frac{R}{L}t\right)}$$

A general form representing RL

$$i(t) = I_0 e^{-t/\tau}$$
 where

 $\tau = \frac{L}{R}$

The <u>time constant</u> τ of a circuit is the time required for the response to decay by a factor of <u>1/e or 36.8%</u> of its initial value.

i(t) decays faster for small t and slower for large t.

The general form is very similar to a RC source-free circuit.

Comparison between RL and RC circuit

RL source-free circuit

$$i(t) = I_0 e^{-t/\tau}$$

12

where

$$\tau = \frac{L}{R}$$

RC source-free circuit

$$v(t) = V_0 e^{-t/\tau}$$
 where $\tau = RC$

The key to working with a source-free RL circuit is finding:

$$i(t) = I_0 e^{-t/\tau}$$
 where $\tau = \frac{L}{R}$

$$\tau = \frac{L}{R}$$

- 1. The initial current $i(0) = I_{\rho}$ through the inductor.
- 2. The time constant $\tau = L/R$.

Assume that i(0) = 10 A. Find i(t) and $i_{v}(t)$.

loop 1,
$$\frac{1}{2} \frac{di_1}{dt} + 2(i_1 - i_2) = 0$$

loop 2,
$$6i_2 - 2i_1 - 3i_1 = 0 \implies i_2 = \frac{5}{6}i_1$$

$$\frac{di_1}{dt} + \frac{2}{3}i_1 = 0$$
 Since $i_1 = i$

Since
$$i_1 = i$$

$$i(t) = i(0)e^{-(2/3)t} = 10e^{-(2/3)t} A, t > 0$$

$$i_x(t) = i_2 - i_1 = -1.6667e^{-(2/3)t} A, t > 0$$

Answer: $i_x(t) = 10e^{-2t/3} \text{ A}$; $i_x(t) = -1.6667e^{-2t/3} \text{ A}$

$$2(i_1 - i_2) + 1 = 0 \implies i_1 - i_2 = -\frac{1}{2}$$

$$6i_2 - 2i_1 - 3i_1 = 0 \implies i_2 = \frac{5}{6}i_1$$

$$i_1 = -3 \text{ A}, \qquad i_2 = -i_1 = 3 \text{ A}$$

$$R_{\rm eq} = R_{\rm Th} = \frac{v_o}{i_o} = \frac{1}{3}\Omega$$
 $au = \frac{L}{R_{\rm eq}} = \frac{\frac{1}{2}}{\frac{1}{3}} = \frac{3}{2} \, {\rm s}$

$$i(t) = i(0)e^{-(2/3)t} = 10e^{-(2/3)t} A, t > 0$$

 $i_x(t) = \frac{v}{2} = -1.6667e^{-(2/3)t} A, t > 0$

Ex.5 Find i and v. Assume that i(0) = 12 A.

loop 1,
$$2\frac{di}{dt} + 2(i - i_2) - 3v_x = 0$$

loop 2,
$$8i_2 - 2i + 2v_x = 0$$
, $8i_2 + 4v_x = 0$, $i_2 = -0.5 v_x = 0.5i$

$$2\frac{di}{dt} + 2(i - 0.5i) + 3i = 0 \implies 2\frac{di}{dt} + 4i = 0 \implies \frac{di}{dt} + 2i = 0$$

$$\frac{di}{i} = -2dt \implies \ln(i) = -2t \implies i = I_o e^{-2t}$$

Answer:
$$i(t) = 12e^{-2t}$$
 A; $v_x(t) = -i(t) = -12e^{-2t}$ V

Ex.5 Find i and v_{y} . Assume that i(0) = 12 A.

loop 1,
$$3i_1 - 2i_2 + 2i_1 = 5i_1 - 2i_2 = 1$$

loop 2,
$$2i_1 = -2i_1 + 8i_2$$
 $i_1 = 2i_2$

$$i_2 = \frac{1}{8}, i_1 = \frac{1}{4}$$

$$R_{eq} = \frac{v_o}{i_o} = 4\Omega$$
, $\tau = \frac{L}{R_{eq}} = \frac{2}{4} = \frac{1}{2}$

Answer: $i(t) = 12e^{-2t}$ A; $v_x(t) = -i(t) = -12e^{-2t}$ V

Ex.6 For the circuit, find i(t) for t > 0.

Answer: $i(t) = 5e^{-2t} A$, t > 0

18

7.3 Singularity Functions (1)

- Singularity functions are functions that either are discontinuous or have discontinuous derivatives.
- most widely used singularity functions in circuit analysis are the unit impulse $\delta(t)$, the unit ramp r(t), and the unit step u(t) functions.

7.3 Unit Impulse Function (2)

- The unit impulse function $\delta(t)$ is zero everywhere except at t=0, where it is undefined.
- This may be expressed mathematically as

$$\int_{0^{-}}^{0^{+}} \delta(t)dt = 1$$

$$\delta(t) = \frac{d}{dt}u(t) = \begin{cases} 0, & t < 0 \\ \text{Undefined}, & t = 0 \\ 0, & t > 0 \end{cases}$$

7.3 Unit Ramp Function (3)

The unit ramp function r(t) is zero for negative values of t and has a unit slope for positive values of t.

$$r(t) = \begin{cases} 0, & t \le 0 \\ t, & t \ge 0 \end{cases}$$

7.3 Unit Step Function (4)

The unit step function u(t) is 0 for negative values of t and 1 for positive values of t.

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

7.3 Unit Step Function (5)

Represent an abrupt change for:

7.4 The Step-Response of a RC Circuit (1)

The step response of a circuit is its behavior when the excitation is the step function, which may be a voltage a current source.

- Initial condition: $v(0^-) = v(0^+) = V_0$
- Applying KCL, $C \frac{dv}{dt} + \frac{v V_s u(t)}{D} = 0$

or

$$\frac{dv}{dt} = -\frac{v - V_{s}u(t)}{RC}$$

• Where u(t) is the <u>unit-step function</u>

$$\int \frac{dv}{v - V_s} = -\int \frac{dt}{RC}$$

$$\int \frac{dv}{v - V_s} = -\int \frac{dt}{RC} \qquad \ln(v - V_s) \Big]_{V_0}^{v(t)} = -\frac{t}{RC} \Big]_0^t$$

7.4 The Step-Response of a RC Circuit (1)

$$\ln(v(t) - V_s) - \ln(V_0 - V_s) = -\frac{t}{RC}$$

$$\ln\left(\frac{v(t) - V_s}{V_0 - V_s}\right) = -\frac{t}{RC}$$

$$\frac{v(t) - V_s}{V_0 - V_s} = e^{-\frac{t}{RC}}$$

$$v(t) = V_s + (V_0 - V_s)e^{-\frac{t}{RC}}$$

$$v(t) = v(\infty) + (v(0) - v(\infty))e^{-\frac{t}{\tau}}$$

7.4 The Step-Response of a RC Circuit (2)

Integrating both sides and considering the initial conditions, the solution of the equation is:

7.4 The Step-Response of a RC Circuit (3)

- 3 steps to find out the step response of an RC circuit:
- 1. Initial capacitor voltage v(0).
- 2. Final capacitor voltage $v(\infty)$ DC voltage across C.
- 3. Time constant τ .

$$v(t) = v(\infty) + [v(0^+) - v(\infty)]e^{-t/\tau}$$

Note: The above method is a <u>short-cut method</u>. You may also determine the solution by setting up the circuit formula directly using KCL, KVL, ohms law, capacitor and inductor VI laws.

7.4 The Step-Response of a RC Circuit (4)

 $\frac{x.7}{t}$ Find v(t) for t>0 in the circuit in below. Assume the switch has been open for a long time and is closed at t=0. Calculate v(t) at t=0.5.

Answer: $v(t) = (5.625e^{-2t} + 9.375)V$ in t>0, v(0.5) = 11.44 V

7.4 The Step-Response of a RC Circuit (5)

$$v(t) = v(\infty) + [v(0^+) - v(\infty)]e^{-t/\tau}$$

$$v(0^-) = v(0^+) = 15$$
 Volts

$$i = \frac{15 + 7.5}{6 + 2} = 2.8125 \text{ A},$$

 $v(\infty) = 15 - (2.8125 \times 2) = 9.375 \text{ Volts}$

$$R = 2 // 6 = \frac{3}{2} \Omega$$
, $C = \frac{1}{3}$, $RC = \frac{1}{2}$ $-\frac{t}{\tau} = -\frac{t}{RC} = -2t$

Answer: $v(t) = (5.625e^{-2t} + 9.375)V$ เมื่อ t>0, v(0.5) = 11.44 V 29

7.4 The Step-Response of a RC Circuit (6)

 $\frac{x.8}{x.8}$ Find v(t) for t>0 in the circuit in below. Assume the switch has been open for a long time and is closed at t=0.

$$v(t) = v(\infty) + [v(0^+) - v(\infty)]e^{-t/\tau}$$

$$v(t) = \left(\frac{6}{3+6}\right)12 + \left[0 - \left(\frac{6}{3+6}\right)12\right]e^{-t/\tau}$$

Answer: $v(t) = 8(1 - e^{-t}) \text{ V}, t > 0.$

7.4 The Step-Response of a RC Circuit (7)

Ex.9 Find v(t) for t>0 in the circuit in below.

Answer: $v(t) = 10 - 18e^{-t} V$

7.5 The Step-response of a RL Circuit (1)

The <u>step response</u> of a circuit is its behavior <u>when the excitation</u> is the step function, which may be a voltage or a current source.

Initial current $i(0^-) = i(0^+) = I_0$

Final inductor current

$$i(\infty) = V_{s}/R$$

Time constant $\tau = L/R$

$$i(t) = \frac{V_s}{R} + (I_o - \frac{V_s}{R})e^{-\frac{t}{\tau}}$$

$$i(t) = i(\infty) + \left(i(0^+) - i(\infty)\right)e^{-\frac{t}{\tau}}$$

7.5 The Step-Response of a RL Circuit (2)

3 steps to find out the step response of an RL circuit:

- Initial inductor current i(0) at $t = 0^+$.
- Final inductor current $i(\infty)$.
- Time constant τ . 3.

$$i(t) = i(\infty) + [i(0+) - i(\infty)]e^{-t/\tau}$$

Note: The above method is a short-cut method. You may also determine the solution by setting up the circuit formula directly using KCL, KVL, ohms law, capacitor and inductor VI laws. 33

7.5 The Step-Response of a RL Circuit (3)

Ex.10 The switch in the circuit shown below has been closed for a long time. It opens at t = 0. Find i(t) for t > 0.

$$i(0) = \left(\frac{10}{10+0}\right)6 = 6 \text{ A}$$

$$i\left(\infty\right) = \left(\frac{10}{5+10}\right)6 = 4 \text{ A}$$

$$R_{eq} = 5 + 10 = 15\Omega$$
 ; $\tau = \left(\frac{L}{R_{eq}}\right) = \frac{1.5}{15} = \frac{1}{10}$

$$i(t) = i(\infty) + [i(0+) - i(\infty)]e^{-t/\tau} = 4 + (6-4)e^{-10t} = 4 + 2e^{-10t}$$

Answer: $i(t) = 4 + 2e^{-10t}$

7.5 The Step-Response of a RL Circuit (4)

Ex.11 The switch in the circuit shown below has been closed for a long time. It opens at t = 0. Find i(t) for t > 0.

$$i(0^-) = \frac{10}{2} = 5 \text{ A}$$

$$i(0^{-}) = \frac{10}{2} = 5 \text{ A}$$
 $i(\infty) = \frac{10}{2+3} = 2 \text{ A}$

$$R_{\rm Th} = 2 + 3 = 5 \ \Omega$$

$$R_{\text{Th}} = 2 + 3 = 5 \Omega$$
 $\tau = \frac{L}{R_{\text{Th}}} = \frac{\frac{1}{3}}{5} = \frac{1}{15} \text{s}$

$$i(t) = i(\infty) + [i(0) - i(\infty)]e^{-t/\tau}$$
$$= 2 + (5 - 2)e^{-15t} = 2 + 3e^{-15t} A.$$

Answer: $i(t) = 2 + 3e^{-15t} A$

7.5 The Step-Response of a RL Circuit (5)

Ex.12 At t=0, S_1 is closed and S_2 is closed 4s later. Find i(t) for t=0. Calculate i for t=2s and t=5s.

แบ่งเป็น 3 ช่วง :
$$t < 0$$
, $0 \le t \le 4$, $t > 4$

ช่วงที่ 1:
$$t < 0$$
: $i(0^-) = i(0^+) = 0$

ช่วงที่ 2:
$$0 \le t \le 4$$
: $i(4) = \frac{40}{4+6} = 4$, $R_{eq} = 10\Omega$ $\tau = \frac{L}{R_{eq}} = \frac{1}{2}s$

$$i(t) = i(4) + [i(0^+) - i(4)]e^{-t/\tau} = 4 + (0 - 4)e^{-2t} = 4(1 - e^{-2t})$$

ช่วงที่ 3:
$$t > 4$$
: $i(4) = i(4^-) = 4(1 - e^{-8}) \approx 4A$

KCL at node P:
$$\frac{40-v}{4} + \frac{10-v}{2} = \frac{v}{6} \rightarrow v = \frac{180}{11}$$

$$i(\infty) = \frac{v}{6} = \frac{30}{11} = 2.727A, \ R_{eq} = (4//2) + 6 = \frac{22}{3}\Omega \ \tau = \frac{L}{R_{eq}} = \frac{15}{22}s$$

$$i(t)=i(\infty)+[i(4)-i(\infty)]e^{-(t-4)/\tau}=2.727+(4-2.727)e^{-(t-4)/\tau}=2.727+1.273e^{-1.4667(t-4)/\tau}$$

Answer: $i(2) = 4(1 - e^{-4}) = 3.93A, i(5) = 2.727 + 1.273e^{-1.4667} = 3.02A$