

Learning Objectives

By using the information and exercises in this chapter you will be able to:

- 1. Know and understand the voltage current relationship of resistors (Ohm's law).
- 2. Understand the basic structure of electrical circuits, essentially nodes, loops, and branches.
- 3. Understand Kirchhoff's voltage and current laws and their importance in analyzing electrical circuits.
- 4. Understand series resistances and voltage division, and parallel resistances and current division.
- 5. Know how to convert delta-connected circuits to wye-connected circuits and how to convert wye-connected circuits to delta-connected circuits.

วัตถุประสงค์ การเรียนรู้

โดยใช้ข้อมูลและแบบฝึกหัดในบทนี้ นักเรียนจะ สามารถ:

- 1. รู้และเข้าใจความสัมพันธะหว่างแรงดันไฟฟ้า และกระแสไฟฟ้าของตัวต้านทาน (กฎของ โอห์ม)
- 2. เข้าใจโครงสร้างพื้นฐานของวงจรไฟฟ้าว่า ประกอบด้วยโหนด ลูป และแขนง (nodes, loops, branches)
- 3. เข้าใจกฎแรงดันไฟฟ้าและกระแสไฟฟ้าของ Kirchhoff และความสำคัญในการวิเคราะห์ วงจรไฟฟ้า
- 4. เข้าใจการต่ออนุกรมความต้านทานและการ แบ่งแรงดัน และการต่อขนานความต้านทาน และการแบ่งกระแส
- 5. รู้วิธีแปลงวงจรที่เชื่อมต่อเดลต้าเป็นไวย์ $(\nabla \to Y)$ และวิธีการแปลงวงจรที่เชื่อมต่อไวย์ เป็นเดลต้า $(Y \to \nabla)$

2.1 Ohms Law (1)

(a) Resistor, (b) Circuit symbol for resistance.

2.1 Ohms Law (2)

• Ohm's law states that "the voltage v across a resistor is directly proportional to the current i flowing through the resistor R''. $(v \propto i)$

• Mathematical expression for Ohm's Law is as follows:

$$v = i \times R$$

2.1 Ohms Law (3)

ullet Two extreme possible values of $\,R\,$

(a) Short circuit (R = 0)

A short circuit (**SC**) is a circuit element with R approaching zero (R = 0)

(b) Open circuit $(R = \infty)$.

An *open circuit* (**OC**) is a circuit element with R approaching infinity ($R = \infty$)

Fixed resistors: (a) wirewound type, (b) carbon film type. Mark Dierker/McGraw-Hill Education

2.1 Ohms Law (4)

Ability to resist current (I) is known as resistance (R) measured in ohms (Ω)

2.1 Ohms Law (5)

<u>Conductance</u> is the ability of an element to conduct electric current; it is measured in mho (ohm spelled backward) (\mho) or siemens.

$$G = \frac{1}{R} = \frac{i}{v}$$

The power dissipated by a resistor: (always positive)

$$p = vi = i^2 R = \frac{v^2}{R}$$

2.1 Ohms Law (6)

Ex.1 Calculate the voltage v, the conductance G, and the power p.

2.2 Nodes, Branches and Loops (1)

- A branch(b) is a single element such as a voltage source, a current source, or a resistor.
- A node(n) is the point of connection between two or more branches.
- \blacksquare A loop (l) is any closed path in a circuit.
- A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network

topology: b = l + n - 1

2.2 Nodes, Branches and Loops (2)

Ex.2 How many branches, nodes and loops are there?

2.2 Nodes, Branches and Loops (3)

Ex.3 How many branches, nodes and loops are there?

We must consider it as 2 branches.

$$b = l + n - 1$$

 $7 = 1 + 1 - 1$

2.2 Nodes, Branches and Loops (4)

Ex.4 How many branches, nodes and loops are there?

$$b = l + n - 1$$

6=3+4-1

Applying KCL to a closed boundary.

$$i_1 + i_2 - i_3 - i_4 - i_5 = 0$$

Currents at a node illustrating KCL

$$i_1$$
- i_2 + i_3 + i_4 - i_5 =0

$$i_1 + i_3 + i_4 = i_2 + i_5$$

 Kirchhoff's current law (KCL): algebraic sum of currents entering a node (or a closed boundary) is

ZERO. (ผลรวมของกระแสที่

โหนดใดๆมีค่าเท่ากับศูนย์ หรือ กระแสไหลเข้าโหนดเท่ากับกระแส ไหลออกจากโหนด)

$$\sum_{n=1}^{N} i_n = 0$$

$$V_1 - V_2 - 6 + V_3 - V_4 - 4 = 0$$

$$V_1 = IR_1$$

$$V_2 = -IR_2$$

 Kirchhoff's voltage law (KVL): algebraic sum of all voltages around a closed path(or loop) is **ZERO**. (ผลรวมของ

แรงดันไฟฟ้ารอบลูปใดๆมีค่าเท่ากับศูนย์)

$$\sum_{n=1}^{N} V_n = 0$$

$$V_1 = IR_1$$
 $V_2 = -IR_2$ $V_3 = IR_3$ $V_4 = -IR_4$

Ex.5 Applying the KVL equation for the circuit of the figure below.

$$-v_1 + v_2 + v_3 - v_4 + v_5 = 0$$
$$v_1 + v_4 = v_2 + v_3 + v_5$$

<u>Ex.6</u> Applying the KVL equation for the circuit of the figure below.

$$V_a - V_b = V_{ab} = V_1 + V_2 - V_3$$

 $\underline{\mathsf{Ex.7}}$ Find v_1 and v_2 in the circuit

$$v_1$$
-8- v_2 -34=0
 v_1 - v_2 = 42
 v_1 = 4 i , v_2 = -2 i 34V $+$ v_1 $+$ v_2 $+$ v_2 $+$ v_2 $+$ v_2 $+$ v_2 $+$ v_3 $+$ v_4 $+$ v_4

$$i=7A$$
, $v_1=28V$, $v_2=-14V$

Realistic Resistors

Resistor color code

Band color	Value
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Grey	8
White	9
Gold	0.1
Silver	0.01

Tolerance color code

Band color	±%
Brown	1
Red	2
Gold	5
Silver	10
None	20

Resistor Values

Resistor is 15000 Ω or 15 k $\Omega \pm 5\%$

Resistor is $47 \times 0.01 \Omega$ or $0.47 \Omega \pm 2\%$

Resistor is 1500 Ω or 1.5 k Ω ± 5%

2.4 Series Resistors and Voltage Division (1)

Series: Two or more elements are in series if they are connected sequentially and consequently carry the *same current*.

• The equivalent resistance (R_{eq}) of any number of resistors connected in a series is the sum of the individual resistances.

• The *voltage divider* can be expressed as

$$v_n = \frac{R_n}{R_1 + R_2 + \dots + R_N} v$$

10V and 5Ω are in series

2.5 Parallel Resistors and Current Division (1)

- Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.
- The equivalent resistance of a circuit with N resistors in parallel is :

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

 The total current *i* is shared by the resistors in inverse proportion to their resistances. The *current divider* can be expressed as

$$i_n = \frac{v}{R_n} = \frac{iR_{eq}}{R_n}$$

2.5 Parallel Resistors and Current Division (2)

$$\bullet \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \Longrightarrow R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

$$\bullet \, \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$\Longrightarrow R_{eq} = \frac{R_1 R_2 R_3}{R_2 R_3 + R_1 R_3 + R_1 R_2}$$

$$\bullet \frac{1}{R_{eq}} = \underbrace{\frac{1}{R} + \frac{1}{R} + \dots + \frac{1}{R}}_{N} \Longrightarrow R_{eq} = \frac{R}{N}$$

2.5 Parallel Resistors and Current Division (3)

2.6 Wye-Delta Transformations

$$R_{1} = \frac{A \rightarrow Y}{R_{b}R_{c}} \iff R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}$$

$$R_{2} = \frac{R_{c}R_{a}}{(R_{a} + R_{b} + R_{c})} \iff R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$

$$R_{3} = \frac{R_{a}R_{b}}{(R_{a} + R_{b} + R_{c})} \iff R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$$

2.7 Problems(1)

2.7 Problems(2)

