

Learning Objectives

By using the information and exercises in this chapter you will be able to:

- 1. Fully understand the volt-amp characteristics of capacitors and inductors and their use in basic circuits.
- 2. Explain how capacitors behave when combined in parallel and in series.
- 3. Understand how inductors behave when combined in parallel and in series.
- 4. Know how to create integrators using capacitors and op amps.
- 5. Learn how to create differentiators and their limitations.
- 6. Learn how to create analog computers and to understand how they can be used to solve linear differential equations.

วัตถุประสงค์การเรียนรู้

โดยใช้ข้อมูลและแบบฝึกหัดในบทนี้ นักเรียนจะสามารถ:

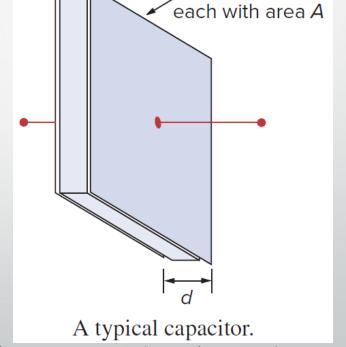
- 1. เข้าใจคุณลักษณะของโวลต์-แอมป์ของตัวเก็บประจุและขดลวด เหนี่ยวนำและการใช้งานในวงจรไฟฟ้าพื้นฐาน
- 2. เข้าใจตัวเก็บประจุทำงานอย่างไรเมื่อต่อแบบขนานและอนุกรม
- 3. เข้าใจขดลวดเหนี่ยวนำทำงานอย่างไรเมื่อต่อแบบขนานและอนุกรม
- 4. รู้วิธีสร้างวงจรอินทิเกรเตอร์โดยใช้ตัวเก็บประจุและออปแอมป์
- 5. รู้วิธีสร้างวงจรดิฟเฟอร์เรนชิเอเตอร์และข้อจำกัดของมัน
- 6. เรียนรู้วิธีสร้างคอมพิวเตอร์แอนาล็อกและทำความเข้าใจว่าสามารถใช้ แก้สมการอนุพันธ์เชิงเส้นได้

Capacitors and Inductors Chapter 6

- 6.1 Introduction
- 6.2 Capacitors (ตัวเก็บประจุ)
- 6.3 Series and Parallel Capacitors (ต่ออนุกรม,ขนานตัวเก็บประจุ)
- 6.4 Inductors (ขดลวดเหนี่ยวนำ)
- 6.5 Series and Parallel Inductors (ต่ออนุกรม,ขนานขดลวดเหนี่ยวนำ)
- 6.6 Applications

6.1 Introduction

- Unlike resistors, which dissipate energy, capacitors and inductors do not dissipate but store energy, which can be retrieved later.
- For this reason, capacitors and inductors are called storage elements.
- As typical applications, we explore how capacitors are combined with op amps to form integrators, differentiators, and analog computers.


OPERATIONAL AMPLIFIER AS INTEGRATOR

6.2 Capacitors (1)

• A capacitor is a passive element designed to **store energy** in its **electric field.**

Dielectric with permittivity ϵ

Metal plates,

• A capacitor consists of two conducting plates separated by an insulator (or dielectric).

6.2 Capacitors (2)

Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor. Mark Dierker/McGraw-Hill Education

6.2 Capacitors (3)

Capacitance C is the ratio of the charge q on one plate of a capacitor to the voltage difference V between the two plates, measured in farads (F).

$$i = C \frac{dv}{dt}$$
 and $C = \frac{q}{V} =$

$$C = \frac{q}{V} = \frac{\varepsilon A}{d}$$

- Where ε is the permittivity of the dielectric material between the plates, A is the surface area of each plate, d is the distance between the plates. ($\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$)
- Unit: F, pF (10^{-12}) , nF (10^{-9}) , and μ F (10^{-6})

6.2 Capacitors (4)

If *i* is flowing into the positive (+) terminal of C

Charging => i is positive (+)

Discharging => i is negative (-)

The i-v relationship of capacitor according to above convention is

$$i = C \frac{dv}{dt}$$

and
$$v = \frac{1}{C} \int_{t_0}^t i \, dt + v(t_0)$$

6.2 Capacitors (5)

The energy, W, stored in the capacitor is

$$w = \frac{1}{2} C v^2$$

- A capacitor is
 - an open circuit to dc (กระแสตรง)
 - its voltage cannot change abruptly.

$$(i=C\frac{dv}{dt}=0)$$

6.2 Capacitors (6)

Ex.1 The current through a 100- μ F capacitor is $i(t) = 50\sin(120\pi t)$ mA. Calculate the voltage across it at t = 1 ms and t = 5 ms. Take $v(t_0) = v(0) = 0$.

$$v = \frac{1}{C} \int_{t_0}^{t} i \ d \ t + v(t_0)$$

$$v = \frac{50mA}{100\mu\text{F}} \int_0^{1ms} \sin(120\pi t) dt = 500 \left(-\frac{\cos(120\pi t)}{120\pi} \middle| \frac{1ms}{0} \right) = 1.3263(1 - \cos(0.377))$$

= 93.14mV

$$v = \frac{50mA}{100\mu\text{F}} \int_0^{5ms} \sin(120\pi t) dt = 500 \left(-\frac{\cos(120\pi t)}{120\pi} \middle| \frac{5ms}{0} \right) = 1.3263(1 - \cos(1.885))$$

$$= 1.7361mV$$

6.2 Capacitors (7)

Ex.2 An initially uncharged 1mF capacitor has the current shown below across it. Calculate the voltage across it at

t = 2 ms and t = 5 ms.

$$v = \frac{1}{1 \text{mF}} \int_{0}^{2ms} 50t dt = 1000 \left(25t^{2} \right|_{0}^{2ms} \right) = 0.1V = 100mV$$

$$v = \frac{1}{1\text{mF}} \int_{2ms}^{5ms} 100mdt + 100mV = 100(3mV) + 100mV = 400mV$$

6.3 Series and Parallel Capacitors (1)

• The equivalent capacitance of *N* parallel-connected capacitors is the sum of the individual capacitances.

$$C_{eq} = C_1 + C_2 + ... + C_N$$

6.3 Series and Parallel Capacitors (2)

• The equivalent capacitance of *N* series-connected capacitors is the reciprocal of the sum of the reciprocals of the individual capacitances.

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$$

6.3 Series and Parallel Capacitors (3)

Ex.3 Find the equivalent capacitance seen at the terminals of the circuit in the circuit shown below:

6.3 Series and Parallel Capacitors (4)

<u>Ex.4</u> Find the voltage across each of the capacitors in the circuit shown below:

6.4 Inductors (1)

An inductor is a passive element designed to store energy in its magnetic field.

An inductor consists of a coil of conducting wire.

6.4 Inductors (2)

• Inductance is the property whereby an inductor exhibits opposition to the change of current flowing through it, measured in henrys (H). ($\mu_0 = 4\pi \times 10^{-7}$ H/m)

$$v = L \frac{di}{dt}$$
 and $L = \frac{\mu AN^2}{l}$

• The unit of inductors is Henry (H), mH (10^{-3}) and nH (10^{-9}).

6.4 Inductors (3)

The current-voltage relationship of an inductor:

$$i = \frac{1}{L} \int_{t_0}^{t} v(t) dt + i(t_0)$$

The power stored by an inductor:

$$w = \frac{1}{2}Li^2$$

An inductor acts like a short circuit to dc (di/dt = 0) and its current cannot change abruptly.

6.4 Inductors (4)

Ex.5 The terminal voltage of a 2 H inductor is v = 10(1-t) V Find the current flowing through it at t = 4 s and the energy stored in it within 0 < t < 4 s. Assume i(0) = 2 A.

$$i = \frac{1}{2} \int_0^4 10(1-t) dt + 2 = \frac{1}{2} \left(10t - 5t^2 \Big|_0^4 \right) + 2 = -20 + 2 = -18V$$

$$w = \frac{1}{2} Li^2 - \frac{1}{2} Li_O^2 = \frac{1}{2} (2)(-18)^2 - 4 = 324J - 4J = 320J$$

6.4 Inductors (5)

Ex.6 Determine v_c , i_L , and the energy stored in the capacitor and inductor in the circuit shown below under dc conditions.

6.5 Series and Parallel Inductors (1)

The equivalent inductance of series-connected inductors is the sum of the individual inductances.

$$L_{eq} = L_1 + L_2 + \dots + L_N$$

6.5 Series and Parallel Inductors (2)

The equivalent capacitance of **parallel** inductors is the reciprocal of the sum of the reciprocals of the individual inductances.

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}$$

6.5 Series and Parallel Capacitors (3)

Ex.7 Calculate the equivalent inductance for the inductive ladder network in the circuit shown below:

6.6 Applications (Integrator)

An integrator is an op amp circuit whose output is proportional to the integral of the input signal.

It is interesting that we can obtain a mathematical representation of integration this way. At node g in Fig.

integration this way. At node a in Fig.

$$i_{R} = i_{C}$$

$$i_{R} = \frac{v_{i}}{R}, \qquad i_{C} = -C \frac{dv_{o}}{dt}$$

But

Substituting these in Eq., we obtain

$$\frac{v_i}{R} = -C \frac{dv_o}{dt}$$
$$dv_o = -\frac{1}{RC} v_i dt$$

Integrating both sides gives

$$v_o(t) - v_o(0) = -\frac{1}{RC} \int_0^t v_i(\tau) d\tau$$

To ensure that $v_o(0) = 0$, it is always necessary to discharge the integrator's capacitor prior to the application of a signal. Assuming $v_o(0) = 0$,

$$v_o = -\frac{1}{RC} \int_0^t v_i(\tau) \, d\tau$$

6.6 Applications (Differentiator)

A differentiator is an op amp circuit whose output is proportional to the rate of change of the input signal.

Applying KCL at node a,

$$i_R = i_C$$

But

$$i_R = -\frac{v_o}{R}, \qquad i_C = C\frac{dv_i}{dt}$$

Substituting these in Eq. yields

$$v_o = -RC\frac{dv_i}{dt}$$

TABLE 6.1

Important characteristics of the basic elements.†

Relation	Resistor (R)	Capacitor (C)	Inductor (L)
v-i:	v = iR	$v = \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau + v(t_0)$	$v = L \frac{di}{dt}$
i-v:	i = v/R	$i = C\frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v(\tau) \ d\tau + i(t_0)$
<i>p</i> or <i>w</i> :	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$
Series:	$R_{\rm eq} = R_1 + R_2$	$C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$
Parallel:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq} = C_1 + C_2$	$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$
At dc:	Same	Open circuit	Short circuit
Circuit variable that cannot			
change abruptly: Not applicable v			i