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Second-Order Circuits
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Second-Order Circuits Chapter 8

8.1 Examples of 2nd order RCL circuit

8.2 The source-free series RLC circuit

8.3 The source-free parallel RLC circuit

8.4 Step response of a series RLC circuit

8.5 Step response of a parallel RLC 
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8.1 Second Order RLC circuits (1)
What is a 2nd order circuit?
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A second-order circuit is characterized by a second-
order differential equation. It consists of resistors and 
the equivalent of two energy storage elements.

RLC Series RLC Parallel RL T-config RC Pi-config



8.2 Source-Free Series RLC Circuits
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➢The solution of the source-free  series RLC 
circuit is called as the  natural response of the 
circuit.

➢The circuit is excited by the energy initially 
stored in the capacitor and inductor.
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How to derive and how to solve?



8.2 Source-Free Series RLC Circuits
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0)0()0()0( Vvvv === −+For  Capacitor :

0)0()0()0( Iiii === −+For  Inductor :



8.2 Source-Free Series RLC Circuits
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Apply KVL

To solve such a 2nd order diff eq. We need 2 initial conditions, 
such as       and          (from       )
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di )0(
)0(i )0(v



8.2 Source-Free Series RLC Circuits
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We get the initial value of the derivative of I from equation after 
applying KVL; that is,



8.2 Source-Free Series RLC Circuits
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8.2 Source-Free Series RLC Circuits
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8.2 Source-Free Series RLC Circuits
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There are 3 possible solutions for the following 2nd

order differential equation: 
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General 2nd order Form
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There are 3 possible solutions for the following 2nd order 
differential equation: 

1. If  > o, over-damped case
tsts

BeAeti 21)( += 2
0

2
2,1  −−=swhere

2. If  = o, critical damped case
teBtAti −+= )()( −=2,1swhere

3. If  < o, under-damped case

)sincos()( tBtAeti dd
t  += − where 22

0  −=d



8.2 Source-Free Series RLC Circuits
Example 1
If R = 10, L = 5H, and C = 2mF in figure below, find , 0, s1 and s2. What type of natural response 
will the circuit have?
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Answer: underdamped
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8.2 Source-Free Series RLC Circuits
Example 2 The circuit shown below has reached steady state at t=0-. If the make-before-

break switch moves to position b at t=0, calculate i(t) for  t > 0.    
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( )AttetBtAeti t
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t )6583.1sin(076.15)6583.1cos(10)sincos()( 5.2 −=+= −− 
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8.2 Source-Free Series RLC Circuits
Example 3 Find i(t) in the circuit of Figure below. Assume 

that the circuit has reached steady state at t=0-.
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Answer: ( )Atteti t )3589.4sin(6882.0)3589.4cos()( 9 += −
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8.2 Source-Free Series RLC Circuits
Example 4 Find v(t) for t > 0
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8.3 Source-Free Parallel RLC Circuits
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The 2nd order 
of expression

0
11

2

2

=++ v
LCdt

dv

RCdt

vd


−

==

0

0 )(
1

)0( dttv
L

IiLet

v(0) = V0 , Apply KCL to the top node:


−

=++

t

dt

dv
Cvdt

LR

v
0

1

Taking the derivative with respect to t and dividing by C
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There are 3 possible solutions for the following 2nd order 
differential equation: 

1. If  > o, over-damped case

tsts
eBeAtv 21     )( += 2

0

2

2,1      −−=swhere

2. If  = o, critical damped case

teBtAtv −+=  )(  )( −=   2,1swhere

3. If  < o, under-damped case

)sincos()( tBtAetv dd
t  += −

where 22
0  −=d



8.3 Source-Free Parallel RLC Circuits
Example 5 Refer to the circuit shown below. Find v(t) for t > 0.    
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8.4 Step-Response Series RLC Circuits
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The step response is 
obtained by the sudden 
application of a dc source.

The 2nd order 
of expression
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The above equation has the same form as the equation for source-free series 
RLC circuit. 
• The same coefficients (important in determining the frequency parameters). 
• Different circuit variable in the equation. 
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8.4 Step-Response Series RLC Circuits
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The solution of the equation should have two components:
the transient response vt(t) & the steady-state response vss(t):

)()()( tvtvtv sst +=

•The transient response vt is the same as that for source-free case

• The steady-state response is the final value of v(t).
• A and B are obtained from the initial conditions :

tsts
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8.4 Step-Response Series RLC Circuits
Example 6 Having been in position for a long time, the switch in the circuit 
below is moved to position b at t=0. Find v(t) and vR(t) for t > 0.
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8.4 Step-Response Series RLC Circuits
Example 7 Find i(t) in the circuit of Figure below. 
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8.5 Step-Response Parallel RLC Circuits
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The step response is obtained by the 
sudden application of a dc source.

It has the same form as the equation for source-free parallel RLC circuit. 
• The same coefficients (important in determining the frequency parameters). 
• Different circuit variable in the equation. 
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8.5 Step-Response Parallel RLC Circuits
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The solution of the equation should have two components:
the transient response vt(t) & the steady-state response vss(t):

)()()( tititi sst +=

• The transient response it is the same as that for source-free case

• The steady-state response is the final value of i(t).     
• The values of A and B are obtained from the initial conditions:    
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8.5 Step-Response Parallel RLC Circuits
Example 8
Find i(t) and v(t) for t > 0 in the circuit shown in circuit shown below: 
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Answer:
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8.5 Step-Response Parallel RLC Circuits
Example 9 Find i1 and i2 for t > 0
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8.5 Step-Response Parallel RLC Circuits

29

2


