Introduction to Microelectronic Fabrication

Chapter 1 An Overview of Microelectronic Fabrication

Historical Trends Silicon Wafer Size

FIGURE 1.1

(a) Relative size of wafers with diameters ranging from 100 to 450 mm; (b) The same integrated circuit die is replicated hundreds of times on a typical silicon wafer; (c) the graph gives the approximate number of $10 \times 10 \text{ mm}$ dice that can be fabricated on wafers of different diameters.

- Early Wafers 1, 1.5, 2 Inch Diameters
- Wafer Size has Increased Steadily
- 200 mm (8") Wafers in Production
- 300 mm (12") Coming on Line Now (> 3B\$/Fab)
- 450 mm Planned

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count) The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

How do they make Silicon Wafers and Computer Chips

Poly Silicon

Amorphous Silicon

Seed Silicon

Silicon ingot

https://www.youtube.com/watch?v=aWVywhzuHnQ

Larger Wafers Lower Die Cost

- Cost to Process a Wafer is Relatively Fixed for a Given Process
- Larger Wafer →Lower Cost/Die

Wafer diameter (in.) (c)

Approximate number of 10×10 -mm dice

For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN0-201-44494-1.

Historical Trends Memory Density (Bits/Chip)

- Moore's Law Exponential Increase in Chip Complexity
- ISSCC Research Benchmarks
 1967 64 bit Memory
 - •1984 1Mb Memory
 - •1995 First 1 Gb Memory

FIGURE 1.2

(a) Dynamic memory density versus year since 1960.

Historical Trends Microprocessor Complexity (Trans./Chip)

- ISSCC Benchmarks
 - •1971 2000 Transistors
 - •1988 1M Transistors
 - •1998 100M Transistors

FIGURE 1.2

(b) Number of transistors in a microprocessor versus year.

Historical Trends Memory Feature Size (µm)

- Feature Size Decreases by 2X approximately every 5 years
- Each New Process Generation Doubles Density - Reduction of Feature Size by 0.707
- The Original Nanotechnology!
 Feature size now 70-90 nm
- Transistors Operate Normally

FIGURE 1.3

Feature size used in fabrication of dynamic memory as a function of time.

Semiconductor Industry Roadmap - ITRS

TABLE 1.1 International Technology Road Map for Semiconductors (ITRS) [4]						
Selected Projections						
Year of First Product Shipment	2001	2003	2005	2008	2011	2014
DRAM Metal Line Half-Pitch (nm)	150	120	100	70	50	35
Microprocessor Gate Widths (nm)	100	80	65	45	30	20
DRAM (G-bits/chip)	2.2	4.3	8.6	24	68	190
Microprocessor (M-transistors/chip)	48	95	190	540	1500	4300
DRAM Chip Area: Year of Introduction (mm ²)	400	480	526	600	690	790
DRAM Chip Area: Production (mm ²)	130	160	170	200	230	260
MPU Chip Size at Introduction (mm ²)	340	370	400	470	540	620
MPU Chip Area: Second "shrink" (mm ²)	180	210	230	270	310	350
Wafer Size (mm)	300	300	300	450	450	450

[4] The International Technology Roadmap for Semiconductors, The Semiconductor Industry Association (SIA), San Jose, CA, 1999. (http://www.semichips.org)

Each new process generation doubles chip density by scaling feature size by 0.7.

NMOS Transistor Top View and Cross-Section

- N-Channel Metal-Oxide
 Semiconductor Transistor
- n- and p-type semiconductor regions
- Thick and thin oxides
- Etching Openings
- Polysilicon gate
- Metal (Al) Interconnections

FIGURE 1.4

The basic structure of an *n*-channel metal-oxide-semiconductor (NMOS) transistor structure. (a) The vertical cross section through the transistor; (b) a composite top view of the masks used to fabricate the transistor in (a). The transistor uses heavily doped polysilicon as the gate "metal."

© 2002 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN0-201-44494-1.

Basic NMOS Process Key Steps

Cross-section view Silicon nitride Thermal oxidation Gate definition •Oxidation Top view of masks p-type silicon •Photolithography (a) Boron CVD nitride Source/drain implant 4 •Implantation deposition implantation <// •Diffusion pSource/drain Active area mask Mask #1 •Etching (b) diffusion •Film Deposition Polysilicon Boron field implant CVD oxide SiO SiO₂ deposition Thermal field (c) oxidation FIGURE 1.6 Phosphorus or arsenic Contact openings Process sequence for a semirecessed SiO SiO oxide NMOS process. (a) Silicon wafer Remove nitride covered with silicon nitride over a thin and oxide pad Metal deposition padding layer of silicon dioxide; (d) (b) etched wafer after first mask step. CVD A boron implant is used to help con-Regrow thin gate SiO₂ Pattern metal trol field oxide threshold; (c) structure oxide following oxidation, nitride removal, and polysilicon deposition; (d) wafer Etch metal pafter second mask step and etching of Boron thresholdpolysilicon; (e) the third mask has adjustment implant \boxtimes (e) been used to open contact windows Passivation layer following silicon dioxide deposition; deposition \boxtimes \boxtimes (f) final structure following metal CVD polysilicon SiO deposition and patterning with fourth \boxtimes deposition \boxtimes mask. Open bonding pads (f)

© 2002 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN0-201-44494-1.

Mask #2

Mask #3

Mask #4

Mask #5

CMOS Technology N-Well Technology Cross-Section

Oxidation

Photolithography

Implantation

Diffusion

Etching

Film Deposition

- Complementary Metal-Oxide Semiconductor Technology
- Dominant Technology in Integrated Circuits Today!
- Requires both NMOS and PMOS Transistors

FIGURE 1.8

Cross-sectional views at major steps in a basic CMOS process. (a) Following *n*-well diffusion, (b) following selective oxidation, and (c) following gate oxidation and polysilicon gate definition; (d) NMOS source/drain implantation; (e) PMOS source/drain implantation; (f) structure following contact and metal mask steps.

Bipolar Transistor Top View and Cross-Section

© 2002 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

- Bipolar Junction Transistor (BJT)
- Standard Buried Collector Process (SBC)
- n- and p-type semiconductor regions
- Thick and thin oxides
- Etching Openings
- Metal (Al) Interconnections

FIGURE 1.5

The basic structure of a junction-isolated bipolar transistor. (a) The vertical cross section through the transistor; (b) a composite top view of the masks used to fabricate the transistor in (a).

> For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN0-201-44494-1.

SBC Process Key Steps

SiO₂

p-silicon

Top views

Buried-layer mask

© 2002 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Mask #4

Mask #5

Mask #6

Mask #7

References

- [1] *Digest of the IEEE International Solid-State Circuit Conference*, held in February of each year. (http://www.sscs.org/isscc)
- [2] *Digest of the IEEE International Electron Devices Meeting*, held in December of each year. (http://www.ieee.org/conference/iedm)
- [3] *Digests of the International VLSI Technology and Circuits Symposia*, co-sponsored by the IEEE and JSAP, held in June of each year. (http://www.vlsisymposium.org)
- [4] *The International Technology Roadmap for Semiconductors*, The Semiconductor Industry Association (SIA), San Jose, CA, 1999. (http://www.semichips.org)

End of Chapter 1

© 2002 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN0-201-44494-1.